Approximating displacement with the body velocity integral

نویسندگان

  • Ross L. Hatton
  • Howie Choset
چکیده

In this paper, we present a technique for approximating the net displacement of a locomoting system over a gait without directly integrating its equations of motion. The approximation is based on a volume integral, which, among other benefits, is more open to optimization by algorithm or inspection than is the full displacement integral. Specifically, we develop the concept of a body velocity integral (BVI), which is computable over a gait as a volume integral via Stokes’s theorem. We then demonstrate that, given an appropriate choice of coordinates, the BVI for a gait approximates the displacement of the system over that gait. This consideration of coordinate choice is a new approach to locomotion problems, and provides significantly improved results over past attempts to apply Stokes’s theorem to gait analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An effective method for approximating the solution of singular integral equations with Cauchy kernel type

In present paper, a numerical approach for solving Cauchy type singular integral equations is discussed. Lagrange interpolation with Gauss Legendre quadrature nodes and Taylor series expansion are utilized to reduce the computation of integral equations into some algebraic equations. Finally, five examples with exact solution are given to show efficiency and applicability of the method. Also, w...

متن کامل

Active Suspension Control: Performance Comparison using Proportional Integral Sliding Mode and Linear Quadratic Regulator Methods

and damper do not provide energy to the suspension system and control only the motion of the car body and wheel by limiting the suspension velocity according to the rate determined by the designer, T~ the above problem, active suspension systems have been proposed by various [3,4,51. Active suspension systems dynamically respond to changes in the road profile because of their ability to supply ...

متن کامل

NUMERICAL APPROACH TO SOLVE SINGULAR INTEGRAL EQUATIONS USING BPFS AND TAYLOR SERIES EXPANSION

In this paper, we give a numerical approach for approximating the solution of second kind Volterra integral equation with Logarithmic kernel using Block Pulse Functions (BPFs) and Taylor series expansion. Also, error analysis shows efficiency and applicability of the presented method. Finally, some numerical examples with exact solution are given.

متن کامل

Development of a 3D Spectral Boltzmann Solver for Plasma Modeling

A numerical framework for studying plasma flows in electric propulsion systems is developed. The novelty of this kinetic-theory-based method is the spectral treatment of the Boltzmann collision operator using Fourier-Galerkin scheme coupled with the computational efficiency of the streaming of the lattice Boltzmann method. This spectral treatment (i) avoids the low Mach number restriction of th...

متن کامل

CALCULATION OF NON LIFTING POTENTIAL FLOW USING DESINGULARIZED CAUCHY\'S FORMULA

This paper discusses the disturbance velocity and potential as well as the total velocity formulation for non lifting potential flow problem. The problem is derived based on the Cauchy method formulation. The adding and subtracting back technique is used to desingularize the integral equations. The desingularized boundary integral equations are then discretized. The discretized equations can be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009